If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2=90
We move all terms to the left:
24x^2-(90)=0
a = 24; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·24·(-90)
Δ = 8640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8640}=\sqrt{576*15}=\sqrt{576}*\sqrt{15}=24\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{15}}{2*24}=\frac{0-24\sqrt{15}}{48} =-\frac{24\sqrt{15}}{48} =-\frac{\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{15}}{2*24}=\frac{0+24\sqrt{15}}{48} =\frac{24\sqrt{15}}{48} =\frac{\sqrt{15}}{2} $
| 2x-4x=5(x-9)-4 | | -3+10u=2u+7+9u | | 3x+4x+8x=180 | | 2|m-3|=4 | | 0=5x^2+2x-7 | | -(8b-3)=-4(5-2b)-9 | | -3(2x+4)=36 | | 15+5.50x=196.50 | | -7(5-x)=3(x+7) | | 5(3x+6)=-17+32 | | s/3=1.2 | | |3x+5|=12x+8 | | 72+4+-14x=36 | | 5(m-5)=10(m+7) | | s/3=1.3 | | -2=7=x/11 | | H=-16t2+28t+3 | | 9+3/5x=10 | | 4x+16+56=11x-2 | | 3x+-9=3x+-9 | | 7z+35=42 | | 5.5d=23.1 | | 3x+11+5x-17=180 | | -4.9t^2+9t-3=0 | | Y/x+6+1=4x/x+6 | | 9x+5-3x=2(9x+6)-7 | | 24x=17x+21 | | -5p+p=-4(p-6)-2(4-2p) | | 45y-45=12 | | 34-3x=4x | | 4(x+6)=7-3(x-2) | | -13/8a=13/4 |